Refine Your Search

Topic

Search Results

Standard

Requirements for an Electronic Components Management Plan

2023-02-14
WIP
EIASTD4899D
This document applies to the development of Plans for integrating and managing electronic components in equipment for the military and commercial aerospace markets; as well as other ADHP markets that wish to use this document. Examples of electronic components, as described in this document, include resistors, capacitors, diodes, integrated circuits, hybrids, application specific integrated circuits, wound components, and relays. It is critical for the Plan owner to review and understand the design, materials, configuration control, and qualification methods of all “as-received” electronic components, and their capabilities with respect to the application; identify risks, and where necessary, take additional action to mitigate the risks. The technical requirements are in Clause 3 of this standard, and the administrative requirements are in Clause 4.
Standard

Requirements for a COTS Assembly Management Plan

2023-02-14
WIP
EIA933D
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document.
Magazine

SAE Truck & Off-Highway Engineering: August 2022

2022-08-04
Deere advances in-field autonomy While stereo cameras and computer vision guide Deere's "limited- release" 8R autonomous tractor, Bear Flag's lidar tech will augment future machines. Positioning to centimeter-level improves agriculture Precision-navigation approaches that emphasize backward compatibility help farms reap more value from autonomous operations. Funding, mandates fuel commercial-vehicle electrification Legislators provide the impetus to electrify trucks and buses, leading to several engineering challenges.
Standard

GUIDANCE FOR USAGE OF DIGITAL CERTIFICATES

2022-07-01
CURRENT
ARINC842-3
The purpose of this document is to provide operational guidance for key life-cycle management, which refers to the phases through which digital certificates and associated cryptographic keys progress, from creation through usage to retirement. Additionally, this document provides implementation guidance for online certificate provisioning of aircraft systems. The scope includes both the onboard part (aircraft system) as well as the ground part (PKI provider and Ground Infrastructure). Consideration of both onboard and ground provides the benefit of security considerations being included in the process flow and chain of custody. Specifically, the management to and from the aircraft is defined within a workflow.
Magazine

Autonomous Vehicle Engineering: July 2022

2022-07-01
An Holistic Approach to Verifying Cybersecurity in Design A powerful new generation of test and sim solutions aims to address specific security concerns associated with automotive designs.
Standard

Processes for Application-Specific Qualification of Electrical, Electronic, and Electromechanical Parts and Sub-Assemblies for Use in Aerospace, Defense, and High Performance Systems

2022-05-19
WIP
ARP6379A
This document describes a process for use by ADHP integrators of EEE parts and sub-assemblies (items) that have been targeted for other applications. This document does not describe specific tests to be conducted, sample sizes to be used, nor results to be obtained; instead, it describes a process to define and accomplish application-specific qualification; that provides confidence to both the ADHP integrators, and the integrators’ customers, that the item will performs its function(s) reliably in the ADHP application.
Magazine

Automotive Engineering: November/December 2021

2021-12-01
High on hydrogen Through its Symbio joint venture with Michelin, Faurecia expands far beyond its interior-systems base into the fuel-cell future. Simulating a faster route to ADAS and AV validation With its new cloud-based Simphera platform, dSpace responds to demand from global automated-vehicle development teams to help manage their expanding, complex workload. Innovating the methanol fuel cell Using methanol as the source fuel provides an alternative to a gaseous-hydrogen distribution and storage infrastructure, among other potential benefits. Engineering the 2022 Toyota Tundra Chief Engineer Mike Sweers talks structure, materials and a different approach to hybrid power.
Standard

AIRCRAFT SERVER, COMMUNICATIONS, AND INTERFACE STANDARD

2021-11-10
CURRENT
ARINC679
ARINC Report 679 defines the functional characteristics of an airborne server that will support Electronic Flight Bags (EFBs) and similar peripherals used in the flight deck, cabin, and maintenance applications. The document defines how EFBs will efficiently, effectively, safely, and securely connect to the airborne server in a way that offer expanded capabilities to aircraft operators. The airborne server has two main functions, first to provide specific services to connected systems, and second to provide centralized security for the EFB and its data. This document is a functional airborne server definition. It does not define the physical characteristics of the server.
Magazine

SAE Truck & Off-Highway Engineering: October 2021

2021-10-07
Defending the heavy-vehicle cyber domain Cybersecurity experts explained at SAE COMVEC 2021 how they're preparing the next generation of thwarters to protect increasingly electrified, connected and automated trucks.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Magazine

Autonomous Vehicle Engineering: September 2021

2021-09-02
Editorial Fool Self-Driving II The Navigator What will result from NHTSA's Tesla Autopilot investigation? Data Drives Driverless Truck Launch Smart diagnostics and advanced validation help support the reliability metrics required to gain confidence that autonomous trucks are ready for the road. Peering into the Distance New sensors of all types look out longer distances - and provide higher resolutions - for engineers pushing ADAS capabilities and higher-level vehicle automation. Ford Drives into SAE Level 2 Driver monitoring was an essential component to engineering the new "hands-free" BlueCruise/Active Glide enhanced ADAS system. A Chore No More? The Detroit Smart Parking Lab opens to develop and test emerging parking technology in real-world settings. Share and Share Alike The concepts of rideshare and urban mobility continue to evolve as new projects test what's possible.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Magazine

Autonomous Vehicle Engineering: July 2021

2021-07-01
Editorial Follow the money The Navigator C-V2X is finally gaining momentum in the U.S. Making the Strategic Move Into AV Testing Having built its global engineering reputation in the combustion-engine era, FEV makes a critical leap into automated-vehicle testing. Sony Jumps Into AV Sensors, Software The consumer-electronics giant leverages its innovative technologies for ADAS prototypes and partners with Hungary-based AImotive for automated-driving software. Mitigating Radar-to-Radar Interference An effective radar interference mitigation strategy should have the right balance between complexity and capability for dealing with the interferers. Amending the Automated-driving 'Constitution' SAE International's J3016 standard has been comprehensively revised with new distinctions and definitions. The Committee chairperson, Barbara Wendling, addresses the fine points behind the industry-defining - and perpetually controversial - classification for automated-driving capability.
Standard

ONBOARD SECURE WI-FI NETWORK PROFILE STANDARD

2021-06-18
CURRENT
ARINC687
This document defines a standard implementation for strong client authentication and encryption of Wi-Fi-based client connections to onboard Wireless LAN (WLAN) networks. WLAN networks may consist of multi-purpose inflight entertainment system networks operating in the Passenger Information and Entertainment System (PIES) domain, dedicated aircraft cabin wireless networks or localized Aircraft Integrated Data (AID) devices operating in the Aircraft Information Services (AIS) domain. The purpose of this document is to focus on the client devices requiring connections to these networks such as electronic flight bags, flight attendant mobile devices, onboard Internet of Things (IoT) devices, AID devices (acting as clients) and mobile maintenance devices. Passenger devices are not within the focus of this document.
Magazine

Autonomous Vehicle Engineering: May 2021

2021-05-01
Editorial Making Safety Standard The Navigator Sensor Monoculture is a Terrible Idea 3D-printed Radar Rises Toward Production Lunewave's unique Luneburg-lens technology aims to simplify vehicle radar arrays - and deliver better ADAS and AV performance. Accelerating Automotive Radar NXP's new, fifth-generation chipsets unleash 16-nm FinFet technology to the ADAS and AV markets. Autonomy's Computing Backbone Cloud-computing networks are speeding AV development and preparing to manage tomorrow's data-reliant AV fleets. Get in Line Evolving truck-platooning techniques are paving unique paths to high-level commercial vehicle autonomy. Ford in 'No-hands' Land BlueCruise hands-free driver-assist is available later this year for the Mustang Mach-E and F-150 pickup. ADAS-equipped Trucks Save Bucks Bosch research finds one specific driver-assistance feature may reduce costs associated with property damage by up to 35% for Class 7 and 8 trucks.
Technical Paper

Deep Learning Based Real Time Vulnerability Fixes Verification Mechanism for Automotive Firmware/Software

2021-04-06
2021-01-0183
Software vulnerability management is one of the most critical and crucial security techniques, which analyzes the automotive software/firmware across the digital cockpit, ADAS, V2X, etc. domains for vulnerabilities, and provides security patches for the concerned Common Vulnerabilities and Exposures (CVE). The process of automotive SW/FW vulnerability management system between the OEMs and vendors happen through a channel of fixing a certain number of vulnerabilities by 1st tier supplier which needs to be verified in front of OEMs for the fixed number and type of patches in there deliverable SW/FW. The gap of verification between for the fixed patches between the OEMs and 1st tier supplier requires a reliable human independent intelligent technique to have a trustworthiness of verification.
Magazine

Autonomous Vehicle Engineering: March 2021

2021-03-04
Editorial SPAC attack The Navigator Mapping the way to safe and natural automated driving Motorcycles Enter the ADAS Age The latest models from BMW, Ducati and KTM feature Bosch's new ACC setup, but further advancements will require navigating critical rider-control strategies. On the Way to SVA Aptiv says its Smart Vehicle Architecture central controller is the key to simpler, more compact and higher-performance ADAS and AV systems. New Insistence for Driver Assistance Panelists at SAE International's 2021 Government/Industry Meeting say assisted-driving technology is worthwhile - but effective driver monitoring is crucial. Flash! Lidar's Next Generation Arrives Technology solutions from new players and alliances are poised to drive down cost. Horiba MIRA's Vision for World-Class AV Testing A new autonomous vehicle development center called Assured CAV boasts a lengthy list of assets and capabilities.
X